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Geometrically invariant interactions in capillary wave 
surface models? 

S C Lin and M J Lowe 
Physics Department, University of Edinburgh, Mayfield Road, Edinburgh, EH9 352, UK 

Received 21 June 1982 

Abstract. We examine the role of geometrically invariant interactions, such as curvature. 
in modulating the long-distance behaviour of surface tension models in the context of a 
perturbative €-expansion approach first discussed by Wallace and Zia. A suggestive 
semiclassical calculation shows how some of these interactions arise. The renormalisation 
and, hence, scaling properties of the simplest of these interactions, the contraction of the 
second fundamental form with the metric tensor (g b ) ,  are considered. 

1. Introduction 

Fluctuating surfaces and their implications for the critical properties of systems have 
been studied (Wallace and Zia 1979, Lowe and Wallace 1980, Lowe 1982). The 
simplest type of fluctuating surface (i.e. one which is (d - 1)-dimensional in a d-bulk 
dimensional system) arises in Ising-like systems where it represents the interface 
between adjacent regions of ‘up’ and ‘down’ spins. In a field theoretic model, such 
an interface arises as a solution of the Euler-Lagrange equations which interpolates 
between field values at the bottom of two potential wells of equal depth. 

Other authors have considered the interface profile (Jasnow and Rudnick 1978a,b, 
Ohta and Kawasaki 1977, Wallace and Zia 1979). Other generalisations have been 
studied (Lawrie and Lowe 1981, Lowe 1982) where an interface with an O(2) field 
defined on it has been considered. 

The leading long-distance behaviour of the simple interface is governed by a 
Hamiltonian which is proportional to the area of the surface as its fluctuates into the 
remaining dth dimension. This result can be derived from a semiclassical calculation 
(Diehl eta1 1980), which begins by considering the fluctuations about the interface-type 
solution of the Euler-Lagrange equations. A gapless (Goldstone) field, f ( y  ), where 
y is defined on a (d - 1)-dimensional flat reference plane, arises because the solution 
breaks the Euclidean invariance of the system. This Goldstone mode can represent 
the position of the surface as it fluctuates with respect to the flat reference plane. 
One then proceeds, in principle, to integrate out all but the gapless mode in the 
partition function. This will leave us with an effective Hamiltonian, the most relevant 
(in the long-distance limit) interactions of which will be proportional to the surface 
area, involving only first derivatives of the field f .  There will also be less relevant 
interactions involving higher derivatives of f. As the surface can be described by a 
field f ,  the derivatives o f f  can also be understood in geometric language. The interface 
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in this case is a (d - 1)-dimensional submanifold of a Euclidean d-dimensional mani- 
fold. The geometry of this (d - 1)-dimensional submanifold is determined by gii and 
b i j :  they are coefficients of first and second fundamental forms, respectively. For the 
submanifold with the parametrisation 

2 + f ( y  ’) = 0 where i, j = 1,2 ,  . . . , d - 1, (1.1) 

gIj and bI j  are given by 

The first fundamental form (metric tensor) can be illustrated by considering an 
infinitesimal unit of distance (ds) on the curved submanifold which can be straightfor- 
wardly shown to be given by (ds)2 = g,, dx‘ dx’. The second fundamental form governs 
the deviation of the surface from a tangent plane-i.e. the point on the surface given 
by the ordinates y I  +dy, from the tangent plane at y, can be seen to be S = ib,/ dy, dy,. 

The higher-derivative interactions will take the form of geometric invariants such 
as g b (the contraction of the second fundamental form with the metric tensor g,,), 
curvature, (g b ) 2 ,  etc (Eisenhart 1926, Sternberg 1964). 

In practice, it is highly difficult to perform the integration over the massive fields 
to all but the leading order, i.e. to obtain the surface area term. However, we present 
a highly suggestive semiclassical calculation which displays the origin of some of the 
higher-derivative interactions. The role of the E(d) symmetry in determining the 
form of these interactions is considered (see Wallace 1981). 

We then proceed to perform a perturbative analysis of the resulting effective 
Hamiltonian in d = 1 + E  bulk dimensions (Wallace and Zia 1979) in a way which is 
similar to the analysis of the nonlinear sigma model in (2 + E )  dimensions (BrCzin and 
Zinn-Justin 1976). The higher-derivative interactions are treated as small perturba- 
tions to the surface tension term. An effective potential technique first developed by 
Forster and Gabriunas (1981) is extended and used to study the renormalisation 
properties of these interactions. We then proceed to demonstrate explicitly the 
renormalisability of the simplest of these interactions (i.e. g 6 )  to one loop and hence 
derive its renormalisation group scaling properties. 

2. Semiclassical calculation 

The starting point for this calculation is a field theoretic model characterised by the 
Hamiltonian (H(q5)) with a potential which possesses two minima of equal depth in 
d spatial dimensions. This model will possess a solution of the Euler-Lagrange 
equations which interpolates between the two minimum field values 

where the solution depends on only one ordinate 2 .  

As discussed previously (Lowe 1982), the technique for deriving the effective 
Hamiltonian for the Goldstone modes consists of finding a modification of the configur- 
ation (2.1) which allows for the Goldstone modes but is a solution of the Euler- 
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Lagrange equations to within acceptable errors, i.e. those which involve higher deriva- 
tives of the f field. In the partition function 

(2.2) 

and y i  are the d - 1 ordinates perpendicular to z .  We must also impose 

I q ( z ,  y )  dz = 0 (2.5) 

in order to avoid double counting of the Goldstone degrees of freedom. 
This ensures that the change of variables (2.3) is unambiguous, and that the 71 

field will contain no massless modes which would give rise to infrared divergences 
when loops in q propagators are considered. 

On substitution of (2.3) into the functional integral (2.2),  we obtain 

x e x p ( j  dd-’y[l +(Vf)’]’’’[l/T+cg * b +dR]+O(q2?+Wq))  

where 

1/T = I dz[d4,(z)/dz]’ 

c = I dz z[d4,(z)/dzI2 

dz ~ ~ [ d 4 ~ ( z ) / d z ] ~  

and R is the curvature scalar. These expressions can be shown to be consistent with 
the formalism given by (1.1)-(1.3) up to total derivatives. 

There will of course be a Jacobian factor which is in fact negligible from our point 
of view. Apart from any other consideration, the Jacobian will involve a factor of a 
one-dimensional spatial delta function which can be ignored in a dimensional regu- 
larised formalism (see Lawrie and Lowe 1981). 



350 S C Lin and M J Lowe 

The key point is that the quadratic terms in 7 ensure that the 7 field is massive, 
while U has been carefully selected to ensure that the term linear in 7 has coefficients 
which involve third derivatives off  or the equivalent. The integration of the massive 
field can now be performed trivially to zero-loop (tree-diagram) level, since the extra 
f interactions so generated will be less relevant than the interactions explicitly in (2.6). 

This must be treated with some caution because we must also evaluate the one- 
and two-loop terms in T ,  in order to obtain the full long-distance behaviour of the 
system to this order. However, the emergence of the curvature scalar is amusing. 

In fact, there is a very limited number of interaction terms which possess the full 
E ( d )  symmetry of the original system. Particularly restrictive are the symmetry 
transformations which rotate one of the y axes into the z axis. These are nonlinearly 
realised on the f field. In fact, only the geometric invariants can occur explicitly to 
the order to which we are working and they include (g b)’ as well as the objects 
displayed in (2.6). 

The absence of (g - b)’ in (2.6) is probably not significant since, in any case, (g b)’ 
and R will presumably mix under renormalisation and hence under their renormalisa- 
tion group flows. Unfortunately, the technical complexity of the calculations has 
prevented us from confirming this explicitly. 

3. Renormalisation of (g - 6 )  

In this section we will consider the Hamiltonian 

The mass term is introduced to control infrared problems. It is worth observing that 
the coefficient c will be zero in those systems in which the ‘interface’ solution is 
antisymmetric under reversal of the z axis, which in turn is a consequence of a ‘4 + -4’ 
symmetry of the original Hamiltonian. 

As has been demonstrated by a number of authors (Wallace and Zia 1979, Forster 
and Gabriunas 1981), the surface tension part of the Hamiltonian is perturbatively 
renormalisable in an &-expansion context for F = d - 1 with a single coupling constant 
(T) renormalisation. A renormalised dimensionless coupling constant t is introduced, 

T = ZK -‘t, (3.2) 

and K is a renormalisation mass scale. 
A beta function can be derived from this coupling constant renormalisation. This 

has a zero for t = O ( E )  of the kind which indicates a second-order phase transition. 
A renormalisation group invariant length scale can be introduced which diverges as 
this fixed paint value of t is approached from below. 

Let us consider cg b to be a small perturbation. The point at issue here is 
to demonstrate that, provided we restrict ourselves to diagrams with only one vertex 
coming from the expansion of g . b [  1 + (Vf)’]”’ in powers off  (i.e. those terms which 
are linear in C ) ,  g - b[l  + (Vf)’]’’z will be multiplicatively renormalisable. In practice, 
if only because of the infinite set of diagrams one would have to consider, it is best 
to use the free energy functional (effective potential) method of Forster and Gabriunas 
(1981). 
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This involves calculating the free energy for the system (3.1) for certain configur- 
ations. In more conventional theories (such as d4 in four dimensions), where the 
zero-momentum parts of vertices are of interest because these contain all 
the divergences, we evaluate the free energy functional for spatially independent field 
configurations. By contrast, the divergent parts of an n-point diagram involving one 
insertion from g b [ l  + (Vf)’]”’ and any number of insertions from the [1+ (Vf)’]”’ 
(surface tension) part of the Hamiltonian is proportional to knf l  where k is a typical 
external momentum scale. This is of course due to the presence of one second 
derivative of the field f and any number of first derivatives off.  It can be shown that 
we can study this part of the theory by evaluating the free energy functional for a 
configuration off involving terms linear and quadratic in y (i.e. with first and second 
derivatives only), 

f ( y )  =NIyl +%fr,y,y,, (3.3) 
and working to first order in M and any power of N (see Forster and Gabriunas 1981). 

The calculation presents some interesting technical aspects. In particular, a number 
of the vertices involved in the calculation depend linearly on yI .  The calculation is 
performed in momentum space and yL  is interpreted as a Fourier transformatior of a 
derivative of a momentum conservation delta function 

After a long and tedious calculation, the counterterm necessary to render the 
system finite transpires to be proportional to g * b [ 1 + (Vf)*]”’. A simple multiplicative 
renormalisation of the coefficient c thus suffices to make the system finite, 

C R  = z,’cb 2 ,  = (1 + t / F ) .  (3.5) 

We are now in a position to calculate the renormalisation group flow of the renor- 
malised c ’. For temperatures close to the critical value, 

(3.6) 
The picture of a long-distance behaviour of the Hamiltonian (3.1) governed by the 
fixed point of the surface tension Hamiltonian modified by corrections due to higher- 
derivative geometric invariants is thus confirmed to be stable under renormalisation 
group flows. 

R I - r + O ( e z )  
C - K  

Acknowledgment 

We would like to thank Professor D J Wallace for help and encouragement in the 
course of this work. 

References 

Brezin E and Zinn-Justin J 1976 Phys. Rev. B 14 3110-20 
Diehl H W, Kroll D M and Wagner H 1980 Z. Phys. B 36 329-33 
Eisenhart L P 1926 Riemanniari Geometry (Princeton: Princeton LJniversity) pp 187-220 
Forster and Gabriunas A 1981 Phss. Rev. A 24 598-600 



S C Lin and M J Lowe 

Jasnow D and Rudnick J 1978a Phys. Rev. B 17 1351-4 
- 1978b Phys. Rev. Lett. 41 698-701 
Lawrie I D and Lowe M J 1981 J.  Phys. A:  Math. Gen. 14 981-92 
Lowe M J 1982 J. Phys. A: Math. Gen. 15 1741-5 
Lowe M J and Wallace D J 1980 Phys. Lett. 93B 433-6 
Ohta T and Kawasaki K 1977 Prog. Theor. Phys. 58 467-81 
Sternberg S 1964 Lectures on Differential Geometry (New York: Prentice Hall) pp 237-92 
Wallace D J 1981 Proc. Z l s r  Scottish University Summer School in Physics, University of Edinburgh pp 

Wallace D J and Zia R K P 1979 Phys. Rev. Lett. 43 808-12 
459-517 


